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The overriding objective of this project has been to develop new tools for analyzing distributed
dynamical networks and for controlling them. More specifically, our work has focused on three
interrelated objectives. First, we have sought to develop algorithms, exemplified by distributed
averaging, for distributing information among the members of a group of mobile autonomous agents.
Second we have focused on the crafting of asynchronous distributed algorithms for performing key
computations across a network such as finding solutions to linear equations. Third we have studied
how to used graph rigidity theory combined with nonlinear control theory to develop techniques for
autonomously maintaining the correct relative positions of mobile autonomous agents or sensors
in a large agent network. Maintaining correct positions is directly related to maintaining network
connectivity, an issue of critical importance in almost any multi-agent network which is to be
invulnerable to component failures or attack.

Distributed averaging is a special type of consensus seeking for which the goal is for all members
of a group of autonomous agents to ultimately compute the average of the initial values of their con-
sensus variables. Because distributed averaging is a special form of consensus seeking, the methods
used to obtain a distributed average are more specialized than those needed to reach a consensus.
There are three different approaches to distributed averaging: linear iterations, gossiping, and dou-
ble linear iterations which are also known as push-sum algorithms. Linear iterations for distributed
averaging can be modeled as a linear recursion equation in which the possibly time-varying update
matrix must be doubly stochastic. The doubly stochastic matrix requirement cannot be satisfied
without assuming that each agent knows an upper bound on the number of neighbors of each of its
neighbors. Gossiping on the other hand, is a very widely studied approach to distributed averaging
in which each agent is allowed to average its consensus variable with at most one other agent at
each clock time. Gossiping protocols can lead to deadlock unless specific precautions are taken to
insure that they do not and these precautions generally lead to fairly complex algorithms unless
one is willing to accept probabilistic or periodic solutions. Push-sum algorithms are based on a
quite clever idea proposed more than a decade ago but not fully developed. Such algorithms are
somewhat more complicated than linear iterations, and generally require more data to be commu-
nicated between agents. They are however attractive because, at least for some implementations,
the requirement that each agent know the number of neighbors of each of its neighbors can be
avoided.

We have made significant progress in the area of distributed averaging. We have shown that
the order in which individual gossips take place in a periodic gossiping process does not effect
the rate of convergence if the underlying graph is a tree [26]. We have explained how to solve
the distributed averaging problem on tree graphs in finite time [8]. We have demonstrated that
it is possible to improve the rate of convergence in periodic gossiping algorithms by using convex
combination rules rather than standard averaging rules [2]. For ring graphs, we have explained
how to order the gossip in periodic gossiping sequences to achieve the best possible convergence
rate and we have related this optimization problem to the classic edge coloring problem from graph
theory[18]. We developed several request-based deterministic gossip protocols which are guaranteed
not to deadlock [20]. Using a new concept, we derived two simple broadcast-free, asynchronous
algorithms of the push-sum type which avoid deadlock and solve the distributed averaging problem
[27]. In the area of consensus, we have used a special semi-norm developed in our earlier work,
to derive necessary and sufficient conditions for exponential convergence of both discrete-time and
continuous time linear consensus processes [10, 24].

We have made a quite important advance in the area of distributed computation by inventing
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a distributed algorithm for solving a linear algebraic equation of the form Ax = b assuming the
equation has at least one solution [3, 4, 15]. The equation is simultaneously solved by m agents
assuming each agent knows only a subset of the rows of the partitioned matrix [A b ], the current
estimates of the equation’s solution generated by its neighbors, and nothing more. Each agent
recursively updates its estimate by utilizing the current estimates generated by each of its neigh-
bors. Neighbor relations are characterized by a time-dependent directed graph N(t) whose vertices
correspond to agents and whose arcs depict neighbor relations. We have shown that for any matrix
A for which the equation has a solution and any sequence of “repeatedly jointly strongly connected
graphs” N(t), t = 1, 2, . . ., the algorithm causes all agents’ estimates to converge exponentially fast
to the same solution to Ax = b. We have also shown that, under mild assumptions, the neighbor
graph sequence must actually be repeatedly jointly strongly connected if exponential convergence
is to be assured. We’ve derived worst case convergence rate bound for the case when Ax = b has
a unique solution. We have demonstrated that with minor modification, the algorithm can track
the solution to Ax = b, even if A and b are changing with time, provided the rates of change of
A and b are sufficiently small. We have explained how to modify the algorithm so that it can
compute a least squares solution to Ax = b in a distributed manner, even if Ax = b does not have
a solution. We have devised modifications of the algorithm to solve the least squares problem in an
efficient manner [19, 22]. It turns out that this modified algorithm can also be used to solve certain
sensor network localization problems. We have shown that exponential convergence to a solution
occurs even if the times at which each agent updates its estimates are not synchronized with the
update times of its neighbors [5, 23] and we have derived necessary and sufficient conditions for the
associated discrete-time dynamical system to be exponentially stable.[11, 24] .

We have significantly broadened our findings in the area of formation control, focusing largely
on “undirected rigid formations.” By an undirected rigid formation of mobile autonomous agents
is meant a formation based on “graph rigidity” in which each pair of “neighboring” agents i and
j is responsible for maintaining the prescribed distance dij between them. Recent research by
several different groups has led to the development of an elegant potential function based theory
of formation control which provides gradient laws for asymptotically stabilizing a large class of
rigid, undirected formations in two-dimensional space assuming all agents are described by kine-
matic point models. This particular methodology is perhaps the most comprehensive currently
in existence for maintaining undirected formations based on graph rigidity. In our research we
have been able to explain what happens if neighboring agents i and j using such gradient controls
have slightly different understandings of what the desired distance dij between them is suppose
to be . The question is relevant because no two positioning controls, whether they use a form of
integral control or not, can be expected to move agents to precisely specified positions because of
inevitable imprecision in the physical comparators used to compute the positioning errors. What
one would hope for is a gradual distortion of the formation from its target shape as discrepancies
is desired distances increase. While this is observed for the gradient laws in question, something
else quite unexpected happens at the same time. In particular, we have been able to prove that
any undirected rigid formation in the plane with mismatching target distances will, almost for
certain, go into a circular limit cycle traversed at a constant angular velocity. [12, 17]. This elusive
result, which has taken several years to fully develop, makes nontrivial use of rigidity theory and
differential geometry. Recently we have been able to show the corresponding algorithm applied to
formations in three dimensional space will, under the same conditions, cause such formations to
exhibit unwanted helical motion [6, 14]. Our latest efforts along these lines has been to develop
algorithms capable of eliminating these unwanted behaviors [7, 13, 28].
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Here is a list of our specific accomplishments:

1. A probabilistic explanation was developed of why a previously proposed accelerated gossip
algorithm works [1].

2. We were able to prove that the order in which individual gossips take place in a periodic
gossiping process do not effect the rate of convergence if the underlying gossip graph is a tree
[26].

3. We demonstrated the possible improvement in convergence rate in periodic gossiping algo-
rithms when convex combination rules are used instead of standard averaging rules [2].

4. For ring graphs, we explain how to order the gossip in periodic gossiping sequences to achieve
the best possible convergence rate and we relate this optimal value to the classic edge coloring
problem [18]

5. We developed several request-based deterministic gossip protocols which are guaranteed not
to deadlock [20].

6. Using a new concept, we derived two simple broadcast-free, asynchronous algorithms which
avoid deadlock and solve the distributed averaging problem [27].

7. This paper presents an algorithm which solves the distributed averaging problem on tree
graphs in finite time [8].

8. Using a suitably defined semi-norm, developed in our earlier work, we derive necessary and
sufficient conditions for exponential convergence of both discrete-time and continuous time
linear consensus processes [10, 24].

9. We develop a distributed algorithm for solving a linear algebraic equation [3, 4, 15].

10. The preceding algorithm for solving a linear algebraic equation is shown to be capable of
function asynchronously [5, 23]

11. Necessary and sufficient conditions are derived for the linear algebraic equation solver just
cited, to be an exponentially stable linear system [11, 24].

12. For the case of a fixed neighbor graph, a continuous-time gradient flow algorithm is developed
for solving a linear algebraic equation [21].

13. By taking advantage of sparsity, an efficient algorithm is derived for solving a linear algebraic
equation [19, 22].

14. Using the concept of a target point, a rigidity based algorithm is developed for maintain the
positions of mobile autonomous agents for a large class of acyclic rigid graphs [16].

15. We have been able to show that the most general class of algorithms for maintaining a
formation of mobile autonomous agents in two dimensions, will go into a stable limit cycle
driven by a sinusoidal frequency if there is either a mismatch in shared data or a bias in at
least one agent’s measurements [12, 17].

16. The preceding finding are generalized to three dimensional space in [6, 14].
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17. Using concepts from adaptive control, algorithms are developed to deal with the robustness
issue just described [7, 13, 28]

18. In [9], an algorithm is developed which can cause a group of mobile autonomous agents to
move into a rigid formation in finite time.
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[10] J. Liu, A. S. Morse, A. Nedić, and T. Başar. Internal stability of linear consensus processes.
In Proceedings of the 53rd IEEE Conference on Decision and Control, pages 922–927, 2014.
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